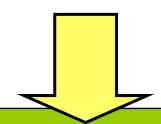

Analisi e Sintesi di un sistema 1/2

- Per analisi di un sistema si intende l'individuazione delle relazioni di causa/effetto tra i segnali di ingresso e uscita, attraverso l'esame di una rappresentazione schematica dei suoi componenti elementari e dei collegamenti che li interconnettono, ovvero:
 - data la rappresentazione schematica del sistema, individuarne il comportamento.
- Per sintesi di un sistema si intende l'individuazione dei componenti e delle interconnessioni necessarie per realizzarlo seguendo la preassegnata specifica funzionale:
 - data la specifica funzionale individuarne la struttura.

Analisi e Sintesi di un sistema 2/2

Analisi

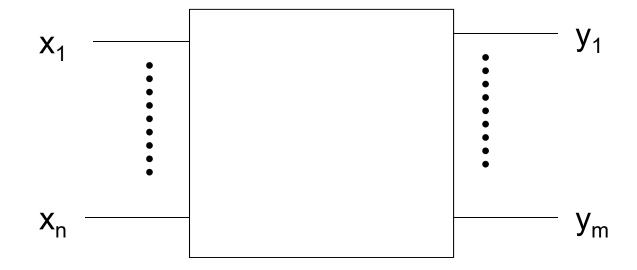

Data la descrizione della STRUTTURA (come è fatta)

Determinarne il COMPORTAMENTO (cosa fa)

Sintesi

Data la descrizione del COMPORTAMENTO (cosa deve fare)

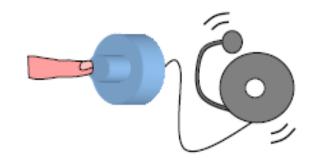
Determinarne la STRUTTURA (come è fatta)


Tassonomia dei circuiti digitali

- I circuiti digitali possono essere classificati in due categorie
 - Circuiti combinatori
 - Il valore delle uscite ad un determinato istante dipende unicamente dal valore degli ingressi in quello stesso istante.
 - Circuiti sequenziali
 - Il valore delle uscite in un determinato istante dipende sia dal valore degli ingressi in quell'istante sia dal valore degli ingressi in istanti precedenti
 - Per definire il comportamento di un circuito sequenziale è necessario tenere conto della storia passata degli ingressi del circuito
- La definizione di circuito sequenziale implica due concetti:
 - Il concetto di tempo
 - Il concetto di stato

Macchine combinatorie

Reti logiche con n ingressi $x_1, x_2, ..., x_n$ e m uscite $y_1, y_2, ..., y_m$ che realizzano la corrispondenza:


$$y_1 = f_1(x_1, x_2, ..., x_n)$$

 $y_m = f_m(x_1, x_2, ..., x_n)$

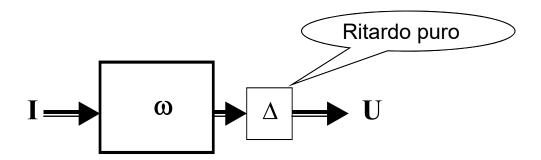
La macchina combinatoria: un esempio

Il campanello

- 1 ingresso (il pulsante), con due possibili valori (premuto, rilasciato)
- 1 uscita (la suoneria), con due possibili valori (suono, nessun suono)

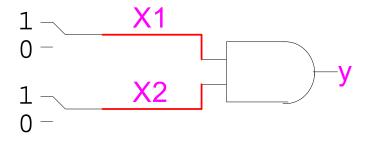
x: pulsante	y: suoneria			
Premuto	Suono			
Rilasciato	Nessun suono			

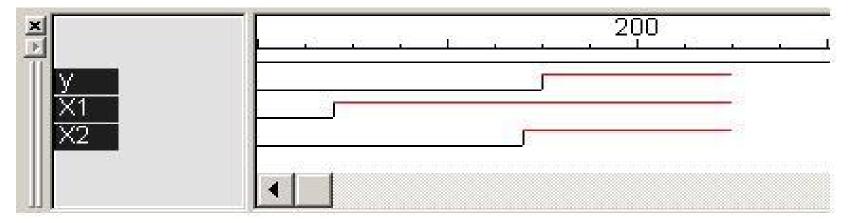
$$y = f(x)$$


Macchine combinatorie

- Una macchina combinatoria è una rete logica con n ingressi (x₁, x₂, ..., x_n) ed m uscite (y₁, y₂, ..., y_m) ed è tale che ad ogni insieme di valori degli ingressi corrisponde un preciso insieme di valori delle uscite
- Il comportamento di una rete combinatoria nxm può essere descritto tramite:
 - » una tabella di verità in cui viene specificato il valore dell'uscita per ognuna delle possibili combinazioni dei valori degli ingressi
 - » m funzioni booleane, una per ogni uscita, ciascuna delle quali esprime il valore della corrispondente variabile di uscita in funzione delle n variabili di ingresso

I limiti delle macchine reali


Tempo di risposta


- Una rete ideale reagisce "istantaneamente" ad ogni sollecitazione in ingresso, ovvero U(t)=ω (I(t))
- In una rete reale la variazione dell'uscita a fronte di una variazione degli ingressi avviene con un ritardo Δ (tempo di risposta):
 U(t+Δ)= ω(I(t))

Il Tempo di risposta

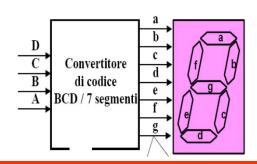
Il Tempo di risposta di una macchina è il ritardo $d=t_f-t_i$ con il quale una variazione sull'ingresso è seguita da una variazione sull'uscita

Macchine combinatorie

- In una macchina combinatoria i valori delle uscite dipendono esclusivamente dai valori degli ingressi
 - macchina combinatoria ideale: tale dipendenza è istantanea
 - macchina combinatoria reale: presenza di ritardo tra l'istante in cui c'è una variazione in uno degli ingressi e l'istante in cui l'effetto di questa variazione si manifesta sulle uscite
- E' importante notare come
 - ciascuna y_i può essere decomposta in funzioni componenti
 - due distinte y_i possono contenere una identica funzione componente
- Ciò comporta, ad esempio, una potenziale diminuzione di porte elementari rispetto ad una realizzazione indipendente delle y_i

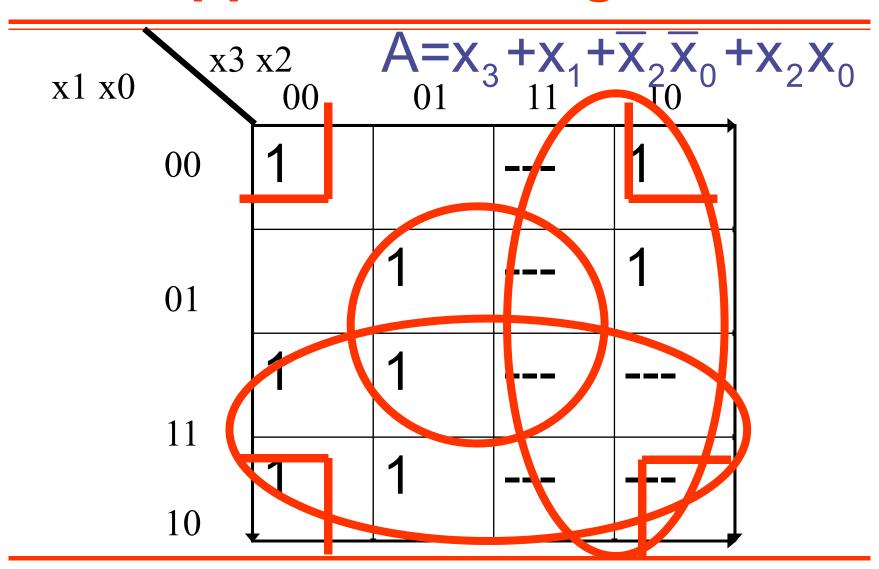
Transcodificatore per visualizzatore a 7 segmenti

- Uno degli indicatori visivi più comuni è l'indicatore a 7 segmenti
- Ogni simbolo è formato da sette segmenti ognuno dei quali è un Led che può essere acceso da un segnale digitale.
- Un BCD-To-Seven-Segment-Decoder riceve in ingresso un simbolo decimale in BCD e genera l'appropriata uscita selezionando i segmenti che devono essere accesi per mostrare su display il simbolo decimale



(a) Segment designation

(b) Numeric designation for display


Transcodificatore per visualizzatore a 7 segmenti

- Le 7 uscite le indichiamo con (a,b,c,d,e,f,g) selezionando i corrispondenti segmenti. Si hanno:
 - 4 input: x3 x2 x1 x0
 - 7 output: a b c d e f g
- La tabella di verità ⇒

BCD Input			Seven-Segment Decoder							
х3	x2	x 1	x0	a	b	C	d	(0)	f	g
0	0	0	0	1	à.	1	1	1	1	0
0.	0	0	1	0	1	1	0	0	\mathbf{O}^{1}	0
0:	0	1	0	1	1	0	$1_{i:i}$	1	0	1
0	0	1	1	1.	1	1	1	.0	0.	(1)
0	1	0	0	0	1	1	0	0	1	1
Ö.	1.	(0)	1	1	0	1	1,	0	1	1
0	1.	1	0	1	0	1	1.	1	1	1
a -	1	1	1	1	1	1	0	0	0	0
1	0	0	.0	1	1	1		1	1	1
4	0	0	1	4	1	1	4a	0	1	4

Mappa di Karnaugh di a

Risultati (verificarli)

FUNZIONE	FORMA MINIMA
DI USCITA	
а	$\mathbf{x}_3 + \mathbf{x}_1 + \overline{\mathbf{x}}_2 \overline{\mathbf{x}}_0 + \mathbf{x}_2 \mathbf{x}_0$
b	$\mathbf{x}_3 + \overline{\mathbf{x}}_2 + \overline{\mathbf{x}}_1 \mathbf{x}_0 + \mathbf{x}_1 \mathbf{x}_0$
С	$x_2 + \overline{x}_1 + x_0$
d	$X_3 + \overline{X}_2 X_1 + X_2 \overline{X}_1 X_0 + \overline{X}_2 \overline{X}_0 + \overline{X}_0 X_1$
е	$\overline{\mathbf{x}}_{2}\overline{\mathbf{x}}_{0} + \mathbf{x}_{1}\overline{\mathbf{x}}_{0}$
f	$X_3 + X_2 \overline{X}_1 + X_2 \overline{X}_0 + \overline{X}_1 \overline{X}_0$
g	$x_3 + x_2 + x_1$

Transcodificatore BCD-eccesso3

A	В	C	D	W	Х	у	Z
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0
1	0	1	0	_	_	_	_
1	0	1	1	_	_	_	_
1	1	0	0	_	_	_	_
1	1	0	1	_	_	_	_
1	1	1	0	_	_	_	_
1	1	1	1	-	-	_	

Tabella 3.3 - Tabella di decodifica da codice BCD a Eccesso 3. I trattini indicano condizioni di indifferenza.

Transcodificatore BCD-eccesso3

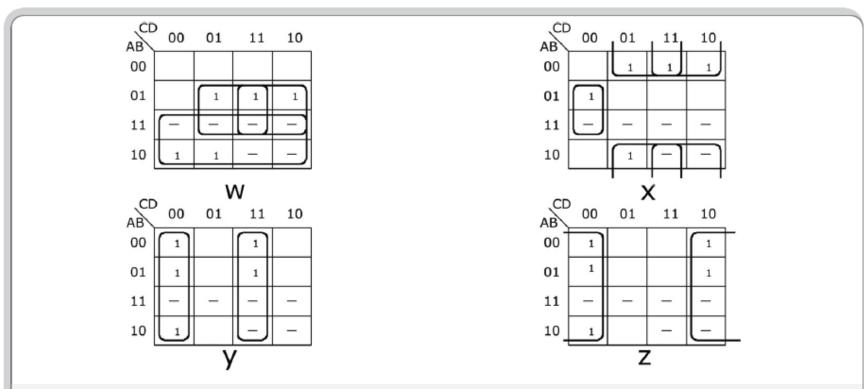


Figura 3.13 - Mappe e coperture delle funzioni di uscita del decodificatore da codice BCD a Eccesso 3.